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Largely inspired by a Nature review article written in collaboration with A Radovic, D Rousseau,  
M Kagan, D Bonacorsi, A Himmel, A Aurisano, K Terao, & T Wongjirad.



Review of Lecture 1
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• For the case where PDFs are known, there is no need for ML — but it’s rare to 
truly be in that situation.  

• ML can be viewed as simply a large and complicated optimization problem. 
All of the same pitfalls—and solutions—to overfitting a less opaque model also 
apply to training ML algorithms. Hopefully these points were reinforced by the 
tutorial example. 

• The use of ML has become ubiquitous in HEP. Many common classification 
and regression tasks already performed by ML-based algorithms, including in 
the real-time (trigger) event-classification systems. 

• A key to ML usage is data-driven characterization of the performance, 
typically done using standard candle calibration samples. Of course, like 
anything else, you should always be skeptical—and use data to prove that 
things are working (to the desired CL). 

• Physics-aware loss functions are a powerful way to use ML in situations 
where out-of-the-box algorithms fail. 



Review of Lecture 1
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loss

wjwi

The NN is trained using gradient descent to minimize loss. The end result is just a 
function; it’s simple to explore its behavior. 

You can enforce desired 
b e h a v i o r i n t h e l o s s 
function, NN design, etc. 
E.g., LHCb’s trigger ML is 
forced to asymptote its 
treatment of high-mass and 
long-lifetime candidates at 
the GeV and ps scales.



Deep Learning

Now let’s look at (at least partially) skipping the feature-engineering step. How 
well can we do using deeper networks and/or special architectures? 
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Shallow Learning

Yesterday we focused on using domain knowledge to engineer input features.
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We physicists have the SM, detailed detector simulations, decades of successful 
experimentation, etc., so we do a good job of dimensional reduction in our heads.



Deep Learning

Adding more layers (making the network deeper) makes it possible, in principle, for the 
machine to learn to form complicated features from low-level unorganized inputs — but to 
what extent does this work?  What architectures are best suited to what types of learning? 
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In principle, we could skip the human-led step; however, in practice, even the mass is a 
rather odd manifold in a high-dimensional feature space (i.e. difficult to learn).



Deep Learning vs Deep Thinking

Baldi, Sadowski, Whiteson [1402.4735]

Does a deep NN really need our help? Does it need high-level features like invariant masses, 
or can it just learn the physics itself from the 4-vectors (given examples)?

The DNN is able to learn all that it needs in this case, as providing high-level features results 
in no gains — in fact, the DNN using low-level features outperforms any selection based only 
on high-level features. 
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Latent Spaces
Each hidden layer in a DNN can be viewed as a latent-space representation of the data, 
rather than just some intermediate step in a complicated matrix multiplication. 
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From this perspective, we are now trying to design the algorithm to learn useful/meaningful 
latent spaces—which is what human-led feature engineering does, and what science does in 
general! (We don’t just use data to learn to improve task performance, we try and gain 
knowledge and understanding about nature from it.)



Convolutional Neural Networks
CNNs are deep feed-forward NNs whose architecture was inspired by the visual cortex. They 
have been used to solve a variety of problems, including many in image-recognition.

The neurons in a CNN look for local examples of translationally invariant features. This is 
done using convolutional filters to locate patterns producing maps of simple features, then 
build complex features using many layers of simple feature maps.

CONVOLUTIONAL FILTER
▸ Core operation in a CNN is the convolutional filter — 

identifies the location of patterns in an image 
▸ Here regions of light and dark are where the pattern 

(or its inverse) matched well within the image
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The use of reduced receptive fields for the neurons—who also share weights—in the early 
layers provides both translational invariance and makes training a tractable problem.
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Convolutional Neural Networks

A major advantage of CNNs is that they learn the convolution filters themselves, i.e. these do 
not need to be provided (known a priori). Notice how this explicitly looks like dimensional 
reduction via feature extraction followed by a simple fully connected optimization function.



CNNs have demonstrated super-human performance in many computer-vision tasks.
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Convolutional Neural Networks

The ability to not just classify an entire image but to segment the pixels into different sources 
should immediately sound useful for HEP reconstruction tasks. 

C O M P U T E R  V I S I O N

4https://alexgkendall.com/computer_vision/bayesian_deep_learning_for_safe_ai/



CNNs for Neutrinos
The first published measurement in HEP to use a CNN is from NOvA [1703.03328].
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Neutrino experiments consist of large 
homogeneous volumes; therefore, 
CNNs can be applied naturally here 
(e.g. spatial translational invariance 
holds). 

Each event consists of two 2-D 
projections, and each pixel is really 
the energy response in a cell. 

Objective is to categorize events, 
e.g., 4 categories are shown at right.

Image from A Radovic.



CNNs for Neutrinos

The NOvA CNN, which is similar to the first GoogLeNet CNN, 
splits each 2-D projection of a NOvA event into a separate 
sequence in the early layers, then concatenates their outputs 
near the end. 

The objective is to categorize events as (e,µ,𝛕)x(QE,RES,DIS), 
or NC, or cosmic.  

Built in CAFFE framework and utilizes softmax output (since 
this is a multi-class problem).  

The NOvA CNN improves in performance over previous PID 
algorithms by an amount equivalent to collecting data for an 
additional 30% exposure time.
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Aurisano, Radovic, Rocco, et al [1604.01444]



Occlusion Tests
Can we learn about the networks response by systematically 

occluding sections of the input “image”?

The !e ID output is by far most 

sensitive to the electron track.
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We can trick the !μ ID output by 

removing the parts of the start 
and end of the track which don’t 
look like a clean muon track.

Reconstructed Neutrino Energy (GeV)
0 1 2 3 4 5

Ev
en

ts

0

5

10

15
NOvA best fit

max mixing

Backgrounds

Full extrap. using ND MC
All Systs

NOvA Simulation

le
ss

 ! μ
 li

ke
 

m
o
re

 ! μ
 li

ke
 

n
o
 c

h
a
n
g
e

True NC

Alexander Radovic CNNs for Neutrino Experiments 18

CNNs for Neutrinos
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There are many ways to study what the CNN has learned. One example shown here.
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Occlusion Tests
Can we learn about the networks response by systematically 

occluding sections of the input “image”?

Alexander Radovic CNNs for Neutrino Experiments 18

Slide below from A Radovic



▸ Explored class of problems known as objet detection for 
LArTPCs 

▸ For surface near the detectors, could be used to locate 
regions of interest in the detector

NEUTRINO INTERACTION DETECTION 19

Note: had use reduce 
resolution image for network

⌫µ + n ! µ+ p

⌫µ + n ! µ+ p

⌫µ + n ! µ+ p

CNNs for Neutrinos
MicroBoone has managed to train CNNs that can locate neutrino interactions within an event 
(draw bounding boxes), identify objects and assign pixels to them [1611.05531].

Similar work using CNNs ongoing at collider experiments in the area of jet physics (see 
[1511.05190], [1603.09349],…).

▸ Trained a network to place a bounding box around a 
neutrino interaction within a whole event view
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RESULT: NEUTRINO DETECTION

[image from T. Wongjirad]
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GANs
Generative adversarial networks (GANs) are a way of training a generative model to produce 
realistic data taking noise as input by pitting it against an adversary.

During training, the discriminator learns to better classify real and fake data, while the 
generator learns to better fool its adversary. 
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CALO GAN
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More (non-HEP) GANs

G E N E R AT I V E  M O D E L  F O R  I M A G E S

6

This is not a real person, but rather a machine’s hallucination! 
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More (non-HEP) GANs



CALO GAN
Monte Carlo simulations in particle physics are based on well-known/well-modeled 
microphysics and the concept of factorization. GEANT is an amazing tool — but it is way too 
slow and prohibitive for generating large enough MC samples for future experimental runs.

CALO GAN can generate the reconstructed CALO image using random noise, skipping the 
GEANT and RECO steps — making it 10,000 x faster than GEANT! (Every LHC experiment 
is studying GANs for HL-LHC MC generation.)

Paganini, de Oliveria, Nachman 
 [1712.10321].
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Adversaries & Loss
Yesterday we talked about physics-aware loss functions and de-correlating from some 
unknown inputs. What if we don’t know how to write a loss function for what we want?
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Louppe, Kagan, Cranmer [1611.01046] 
Shimmin et al [1703.03507]

We can learn one! Now the adversary tries to guess nuisance parameters given the output of 
the classifier. Training drives the classifier response to be independent of these features—
making it robust. (Shown to increase the sensitivity when systematics are considered.)
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Gaussian Processes
What if it’s not possible to calculate the gradient of the loss function, and therefore, a ML 
algorithm cannot be trained using gradient descent (e.g. tuning hyperparameters in a NN)?  

The first few steps of any rigorous explanation of Gaussian processes seem like it’s the least 
useful idea ever — but it’s actually very useful. I’ll try and explain it like a physicist. 

We want to learn a function, but we don’t know it’s functional form. Using a Bayesian non-
parametric approach gives us the flexibility we need to describe this unknown function. What 
do observations tell us about the underlying model? (Should be a familiar question!)



Any physicist should immediately think about the relevant scales in the problem. The plots 
below show the simplistic 1-D case. What is the smallest length scale in x? Answering that 
tells us how “wiggly” the function can be. (I.e., if we know the length scale, we know how 
much information nearby observations provide about the function at an unobserved location.)
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Gaussian Processes

same data, different length scales

Assuming that we don’t know the relevant scales (especially true in high dimensionality for 
black box type problems), we’ll have to learn them from the data — not just the current 
observations, we can collect more data.



Bayesian Optimization
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Start from prior for objective function, treat evaluations as data and produce a posterior used 
to determine the next point to sample (balances exploration vs exploitation). One of the main 
assumptions is that observations are expensive, so we want to find the optimal point using 
the fewest possible observations.
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We considered tuning 20 parameters of Pythia using Monash MC as experimental data using 
BO to perform a closure test. BO quickly tuned the Pythia and was able to find the true input 
parameter values within the quoted uncertainties. 

Converges took at most 50*n(parameters) iterations assuming no prior knowledge about the 
parameter values — and < 10*n(parameters) iterations using sensible ranges.

Pythia Tune

Ilten, MW, Yang [1610.08328]



HEP AI?
Should we just send the raw data straight to some AI? First issue, we are constantly 
reformulating the problem; i.e., we don’t a priori have a complete list of tasks to perform or 
questions to answer (maybe AI can ask the questions?).

Beyond this, our current approach has advantages: it’s modular, making the outputs 
reusable (efficient), interpretable and easily validated, etc. If we are going to radically change 
strategy, we’d like to maintain these features—and whatever we do it must work in real time!
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slide stolen from 
K Cranmer



Summary

• The use of ML has become ubiquitous in HEP. Many common classification 
and regression tasks already performed by ML-based algorithms. 

• Deep learning is starting to make an impact, first with HEP problems that are 
closely related to those commonly solved using DL—but we’re now moving 
towards a producer phase (rather than just consumer) in HEP. 

• Systematics are vital in HEP. Our field is developing systematics aware ML 
algorithms—and has become adept at characterizing black boxes. 

• Beyond the issue of systematics, our data/problems have other interesting 
features from a CS perspective: sparse data, irregular detector geometries, 
heterogeneous information, physical symmetries and conservation laws, etc. 

• Finally, there is a lot of exciting cutting-edge work I did not have time to 
discuss, e.g., Deep Kalman Filters, jet tagging using RNNs, deep NNs are 
now running on FPGAs, automatic anomaly detection, etc.


